
* Department of Physics, University of Maryland, College Park,
Maryland 20742-4111, USA.

Introduction

E
conophysics is an interdisciplinary field applying

mathematical methods of statistical physics to

social, economical, and financial problems . The

term was first introduced by the statistical physicist Eugene

Stanley at the conference in

Kolkata in 1995 and printed in its proceedings .

A puzzling social problem is the persistent economic

inequality among the population in any society. In statistical

physics, it is very well known that identical (“equal”)

molecules in a gas spontaneously develop a widely unequal

distribution of energies as a result of random energy

transfers in molecular collisions. By analogy, a very

unequal probability distribution of money can develop

spontaneously as a result of random money transfers

between economic agents. This idea was proposed by

several econophysicists around 2000 and much earlier by

the sociologist John Angle . The subsequent progress is

reviewed in and popular articles . This novel

approach has virtually no counterpart in the economic

literature. Only the economist Miguel Molico recently

studied the probability distribution of money within the

search theory of money . Econophysics ideas are gradually

starting to receive recognition from the economists and

social scientists .
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Dynamics of Complex Systems

Econophysics papers typically focus on calculations and

analysis of intricate details of mathematical models, but not

on conceptual foundations. This shortcoming was criticized

by the economists . In this article, we present an extended

discussion of the conceptual foundations underlying the

models of random money transfers. We focus on the often-

contentious issues of money conservation and debt, and

also present new results on the energy consumption

distribution around the world. For a more comprehensive

survey of the literature, please refer to the review papers

cited above.

The fundamental law of equilibrium statistical physics

is the Boltzmann-Gibbs distribution of energy . It states

that the probability ( ) of finding a physical system or

subsystem in a state with the energy is given by the

exponential function

( ) = (1)

Here is a normalizing constant, and is the temperature,

which is equal to the average energy per particle: < >,

up to a coefficient of the order of 1.

A derivation of Eq. (1) involves the two main

ingredients: statistical character of the system and

conservation of energy . One of the shortest derivations

can be summarized as follows. Let us divide the system
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STATISTICAL MECHANICS OF MONEY, DEBT, AND
ENERGY CONSUMPTION

VICTOR M. YAKOVENKO*

We briefly review statistical models for the probability distribution of money developed in the

econophysics literature since the late 1990s. In these models, economic transactions are modeled as

random transfers of money between the agents in payment for goods and services. We focus on

conceptual foundations for this approach, on the issues of money conservation and debt, and present

new results for the energy consumption distribution around the world.

“Money, it's a gas." Pink Floyd, Dark Side of the Moon
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into two (generally unequal) parts. Then, the total energy is

the sum of the parts: = + , whereas the probability is

the product of probabilities: ( ) = ( ) ( ). The only

solution of these two equations is the exponential function

(1). Eq. (1) can be also derived by maximizing the entropy

= – ln( ) of the system for a fixed total energy

= , where is the number of particles having the

energy .

These derivations are very general, so one may expect

that the exponential distribution (1) would apply to other

statistical systems with a conserved quantity.

The economy is a big statistical system with millions of

participating agents, so it is a promising target for

applications of statistical mechanics. Is there a conserved

quantity in the economy? Dragulescu and Yakovenko

argued that such a conserved quantity is money . Indeed,

the ordinary economic agents can only receive money from

and give money to other agents. They are not permitted to

“manufacture” money, e.g., to print dollar bills. Let us

consider an economic transaction between agents and .

When the agent pays money to the agent for some

goods or services, the money balances of the agents change

as follows

=

= + (2)

The total amount of money of the two agents before and

after transaction remains the same

+ = + (3)

, there is a local conservation law for money. The

transfer of money (2) is analogous to the transfer of energy

in molecular collisions, and Eq. (3) is analogous to

conservation of energy. Conservative models of this kind

are also studied in some economic literature .

We should emphasize that the transfer of money from

one agent to another represents payment for goods and

services in a market economy. However, Eq. (2) only keeps

track of money flow, but does not keep track of what goods

and service are delivered. One reason for this is that many

goods, , food and other supplies, and most services, ,

getting a haircut or going to a movie, are not tangible and

disappear after consumption. Because they are not

conserved, and also because they are measured in different

physical units, it is not practical to keep track of them. In

contrast, money is measured in the same unit (within a

given country with a single currency) and is conserved in

local transactions (3), so it is straightforward to keep track
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Conservation of Money

of money flow. It is also important to realize that an

increase in material production does not result in an

automatic increase in money supply. The agents can grow

apples on trees, but cannot grow money on trees.

Enforcement of the local conservation law (3) is crucial

for successful functioning of money. If the agents were

permitted to “manufacture” money, they would be printing

money and buying all goods for nothing, which would be a

disaster. The purpose of the conservation law is to ensure

that an agent can buy goods from the society only if he or

she contributes something useful to the society and receives

monetary payment for these contributions. Money is an

accounting device, and, indeed, all accounting systems are

based on the conservation law (2). The physical medium of

money is not essential as long as the conservation law is

enforced. The fiat money (declared to be money by the

central bank) may be in the form of paper currency, but

more often it is represented by digits on computer accounts.

So, money is just bits of information, and monetary system

constitutes an informational layer of the economy.

Monetary system interacts with physical system (production

and consumption of material goods), but the two layers

cannot be transformed into each other because of their

different nature.

Unlike, ordinary economic agents, a central bank or a

central government can inject money into the economy,

thus changing the total amount of money in the system.

This process is analogous to an influx of energy into a

system from external sources. As long as the rate of money

influx is slow compared with the relaxation rate in the

economy, the system remains in a quasi-stationary

statistical equilibrium with slowly changing parameters.

This situation is analogous to slow heating of a kettle,

where the kettle has a well defined, but slowly increasing,

temperature at any moment of time.

Another potential problem with conservation of money

is debt, which will be discussed below. Most of

econophysics models, such as , and some economic

models do not permit debt. Thus, money balances of the

agents cannot drop below zero: 0 for all . Transaction

(2) takes place only when an agent has enough money to

pay the price: . An agent with = 0 cannot buy

goods from other agents, but can receive money for

delivering goods or services to them.

In a big statistical ensemble of agents, monetary

transactions (2) take place between many different agents.

Although purposeful and rational for individual agents,

these transactions can be treated as effectively random for

the whole ensemble. This is similar to statistical physics,

where each atom follows deterministic equations of motion,

but the whole system is effectively random.
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We are interested in the probability distribution of

money ( ) among the economic agents resulting from the

random transfers (2). For this purpose, it is appropriate to

make the simplifying macroeconomic idealizations, as

described above, in order to ensure overall stability of the

system and existence of statistical equilibrium. The concept

of “equilibrium” is a very common idealization in economic

literature, even though the real economy might never be in

equilibrium. We extend this concept to a statistical

equilibrium, characterized by a stationary probability

distribution ( ), in contrast to a mechanical equilibrium,

where the “forces” of demand and supply balance each

other.

Having recognized the principle of local money

conservation, Dragulescu and Yakovenko argued that the

distribution of money ( ) should be given by the

exponential Boltzmann-Gibbs function analogous to Eq. (1)

( ) = (4)

Here is a normalizing constant, and is the “money

temperature”, which is equal to the average amount of

money per agent: = < = , where is the total

money, and is the number of agents.

To verify this conjecture, Dragulescu and Yakovenko

performed agent-based computer simulations of money

transfers between agents. Initially all agents were given the

same amount of money, say, $1000. Then, a pair of agents

( ) was randomly selected, the amount was transferred

from one agent to another, and the process was repeated

many times. Time evolution of the probability distribution

of money ( ) is shown in computer animation videos
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and . After a transitory period, money distribution

converges to the stationary form shown in Fig. 1. As

expected, the distribution is well fitted by the exponential

function (4).

In the simplest model , the transferred amount was fixed

to a constant = $1. Computer animation shows that

the initial distribution of money first broadens to a

symmetric Gaussian curve, typical for a diffusion process.

Then, the distribution starts to pile up around the = 0

state, which acts as the impenetrable boundary, because of

the condition 0. As a result, ( ) becomes skewed

(asymmetric) and eventually reaches the stationary

exponential shape, as shown in Fig. 1. The boundary at =

0 is analogous to the ground-state energy in statistical

physics. Without this boundary condition, the probability

distribution of money would not reach a stationary state.

Computer animations also show how the entropy of

money distribution, defined as = – ( ) ln ( ),

grows from the initial value = 0, where all agents have the

same money, to the maximal value at the statistical

equilibrium.

Dragulescu and Yakovenko studied different additive

rules for . Other papers studied multiplicative rules, such

as the proportional rule = , the saving

propensity , and negotiable price . These models produce

Gamma-like distributions, as well as a power-law tail for a

random distribution of saving propensities. Despite some

mathematical differences, all these models demonstrate

spontaneous development of a highly unequal probability

distribution of money as a result of random money transfers

between the agents. Many papers use the term “wealth”

instead of “money”. We believe that these terms have

d i f f e r en t mean ings and shou ld no t be used

interchangeably .

It would be very interesting to compare these theoretical

results with empirical data on money distribution.

Unfortunately, it is very difficult to obtain such data. The

probability distribution of balances on deposit accounts in a

big enough bank would be a reasonable approximation for

money distribution among the population. However, such

data are not publicly available. In contrast, plenty of data

are available on income distribution from the tax agencies.

Quantitative analysis of such data for the USA shows that

the population consists of two distinct social classes.

Income distribution follows the exponential law for the

lower class (about 97% of population) and the power law

for the upper class (about 3% of population). Although

social classes have been known since Karl Marx, it is

interesting that they can be recognized by fitting the

empirical data with simple mathematical functions. The

computer scientist Ian Wright has demonstrated
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Fig. 1. Stationary probability distribution of money

( ) obtained in the random transfers model . Fits to the

exponential distribution (4). The initial distribution of

money.
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emergence of two classes in sophisticated agent-based

simulations of initially equal agents. This work is further

developed in the book , integrating economics, computer

science, and physics.

Now let us discuss how the results change when debt is

permitted. From the standpoint of individual economic

agents, debt may be considered as negative money. When

an agent borrows money from a bank , the cash balance of

the agent (positive money) increases, but the agent also

acquires a debt obligation (negative money), so the total

balance (net worth) of the agent remains the same. Thus,

the act of money borrowing still satisfies a generalized

conservation law of the total money (net worth), which is

now defined as the algebraic sum of positive (cash ) and

negative (debt ) contributions: = , where is

the original amount of money in the system, the monetary

base . When an agent needs to buy a product at a price

exceeding his money balance , the agent is now permitted

to borrow the difference from a bank. After the transaction,

the new balance of the agent becomes negative: =

0. The local conservation law (2) and (3) is still

satisfied, but now it involves negative values of . Thus,

the consequence of debt is not a violation of the

conservation law, but a modification of the boundary

condition by permitting negative balances 0, so = 0

is not the ground state any more.

If the computer simulation with = $1 is repeated

without any restrictions on the debt of the agents, the

probability distribution of money ( ) never stabilizes, and

the system never reaches a stationary state. As time goes on,

( ) keeps spreading in a Gaussian manner unlimitedly

toward = + and = – . Because of the generalized

conservation law, the first moment of the algebraically

defined money remains constant < = . It means

that some agents become richer with positive balances

0 at the expense of other agents going further into debt with

negative balances 0.

Common sense, as well as the experience with the

current financial crisis, tell us that an economic system

cannot be stable if unlimited debt is permitted . In this

case, the agents can buy goods without producing anything

in exchange by simply going into unlimited debt. Arguably,

the current financial crisis is caused the enormous debt

accumulation in the system, triggered by subprime

mortgages and financial derivatives based on them.

Detailed discussion of the current economic situation is

not a subject of this paper. Going back to the idealized

model of money transfers, one would need to impose a

modified boundary condition in order to prevent unlimited
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growth of debt and to ensure overall stability of the system.

Dr¢agulescu and Yakovenko considered a simple model

where the maximal debt of each agent is limited to . In

this model, ( ) again has the exponential shape, but with

the new boundary condition at = and the higher

money temperature = + . By allowing agents to

go into debt up to , we increase the amount of money

available to each agent by .

Xi, Ding, and Wang considered a more realistic

boundary condition, where a constraint is imposed on the

total debt of all agents in the system. This is accomplished

via the required reserve ratio . Banks are required by law

to set aside a fraction of the money deposited into bank

accounts, whereas the remaining fraction 1– can be lent. If

the initial amount of money in the system (the money base)

is , then, with repeated lending and borrowing, the total

amount of positive money available to the agents increases

to = , where the factor 1/ is called the money

multiplier . This is how “banks create money”. This extra

money comes from the increase in the total debt =

. Given the two constraints on and , we expect to

find the exponential distributions of positive and negative

money characterized by two different temperatures: =

and = (1 – )/ . This is exactly what was

found in computer simulations shown in Fig. 2.

However, in the real economy, the reserve requirement

is not effective in stabilizing debt in the system, because it

applies only to deposits from general public, but not from

corporations. Moreover, there are alternative instruments of

debt, including derivatives and various unregulated

“financial innovations”. As a result, the total debt is not

limited in practice and can reach catastrophic proportions.
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Fig. 2. The stationary distribution of money for the required reserve ratio

= 0.8. The distribution is exponential for both positive and negative

money with different “temperatures” and , as shown in the inset on

log-linear scale.
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Here we briefly discuss several models with non-stationary

debt. Dragulescu and Yakovenko studied a model with

different interest rates for deposits into and loans from a

bank. Computer simulations show that, depending on the

choice of parameters, the total amount of money in

circulation either increases or decreases in time. The

interest amplifies the destabilizing effect of debt, because

positive balances become even more positive and negative

even more negative. A macroeconomic model studied by

the economist Steve Keen exhibits a debt-induced

breakdown, where all economic activity stops under the

burden of heavy debt and cannot be restarted without a

“debt moratorium”. The interest rates were fixed in these

models and not adjusted self-consistently. Cockshott and

Cottrell proposed a mechanism, where the interest rates

are set to cover probabilistic withdrawals of deposits from a

bank. In an agent-based simulation, they found that money

supply increases first, and then the economy crashes under

the weight of accumulated debt.

Bankruptcy is a mechanism for debt stabilization. It

erases the debt of an agent (the negative money) and resets

the balance to zero. However, somebody else (a bank or a

lender) counted this debt as a positive asset, which also

becomes erased. In the language of physics, creation of debt

is analogous to particle-antiparticle generation (creation of

positive and negative money), whereas cancellation of debt

corresponds to particle-antiparticle annihilation

(annihilation of positive and negative money). The former

and latter dominate during economic booms and busts and

represent monetary expansion and contraction. Bankruptcy

is the crucial mechanism for stabilization of money

distribution, but it is often overlooked by the economists.

Interest rates are meaningless without a mechanism

specifying when bankruptcy is triggered.

Numerous failed attempts were made to create

alternative community money from scratch. In such a

system, when an agent provides goods or services to

another agent, their accounts are credited with positive and

negative tokens, as in Eq. (2). However, because the initial

global money balance is zero in this case, the probability

distribution of money ( ) is symmetric with respect to

positive and negative . Unless a boundary condition is

imposed on the lower side, ( ) never stabilizes. Some

agents accumulate unlimited negative balances by

consuming goods and services and not contributing

anything in return, thus undermining the system. A

capitalist society imposes a lower bound on money

balances, whereas a socialist one may consider an upper

bound .
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Consumption

While money is the informational side of the economy,

material standards of living are controlled by the physical

layer. They are primarily determined by the level of energy

consumption and are widely different around the globe.

Using the data from the World Resources Institute,

Banerjee and Yakovenko found that the probability

distribution of energy consumption per capita around the

world approximately follows the exponential law, as shown

in Fig. 3. The limited energy resources in the world

(predominantly fossil fuels) are partitioned among the

world population. As discussed above, maximization of the

entropy with the constraint results in the exponential

distribution of energy consumption.

The world average energy consumption per capita is

about 2.2 kW, compared with 10 kW in USA and 0.6 kW in

India . However, if India and other countries were to adopt

the same energy consumption level per capita as in USA,

there would not be enough energy resources in the world to

do that. The global energy consumption inequality results

from the constraint on energy resources.

Fig. 4 shows the Lorenz curves for the global energy

consumption in 1990, 2000, and 2005 . The horizontal axis

in Fig. 4 represents the cumulative population ranked by the

energy consumption per capita, and the vertical axis

represents the cumulative energy consumption of this

population. The black solid line is the theoretical curve

= + (1– )ln(1– ) for an exponential distribution . In the

Lorenz plot for 1990, one can notice a kink or a knee

34

34

34

9

Fig. 3. Cumulative distribution functions of the energy consumption per

capita around the world for 1990, 2000, and 2005. The solid curve is the

exponential function.
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indicated by the arrow, where the slope of the curve

changes appreciably. This point represents the boundary

between developed and developing countries. Mexico,

Brazil, China, and India are below this point, whereas

Britain, France, Japan, Australia, Russia, and USA are

above. Thus, the difference between developed and

developing countries lies in the degree of energy

consumption and utilization, rather than in the more

ephemeral monetary measures, such as dollar income per

capita. However, the Lorenz curve for 2005 is closer to the

exponential curve, and the kink is less pronounced. It

means that the energy consumption inequality and the gap

between developed and developing countries have

decreased, as also confirmed by the decrease in the Gini

coefficient listed in Fig. 4. We attribute this result to the

rapid globalization of the world economy in the last 20

years. Ultimately, the energy consumption distribution in a

well-mixed globalized world economy is expected to be

exponential and not equal.

The energy/ecology and financial/economic crises are

the biggest challenges faced by the mankind today. There is

an urgent need to find ways for a manageable and realistic

transition from the current breakneck growth-oriented

economy, powered by the ever-expanding use of fossil

fuels, to a stable and sustainable society, based on

renewable energy and balance with the Nature.

Undoubtedly, both money and energy will be the key

factors shaping up the future of human civilization.
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